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Abstract

Numbers of endothelial progenitor cells (EPCs) have been shown to be decreased in subjects with end-stage renal disease (ESRD), the
mechanism of which remained poorly understood. In this study, mutual association among circulating EPC levels, carotid atherosclerosis,
serum pentosidine, and skin autofluorescence, a recently established noninvasive measure of advanced glycation end products accumulation,
was examined in 212 ESRD subjects undergoing hemodialysis. Numbers of circulating EPCs were measured as CD34+ CD133+ CD45low

VEGFR2+ cells and progenitor cells as CD34+ CD133+ CD45low fraction by flow cytometry. Skin autofluorescence was assessed by the
autofluorescence reader; and serum pentosidine, by enzyme-linked immunosorbent assay. Carotid atherosclerosis was determined as intimal-
medial thickness (IMT) measured by ultrasound. Circulating EPCs were significantly and inversely correlated with skin autofluorescence in
ESRD subjects (R = −0.216, P = .002), but not with serum pentosidine (R = −0.079, P = .25). Circulating EPCs tended to be inversely
associated with IMT (R = −0.125, P = .069). Intimal-medial thickness was also tended to be correlated positively with skin autofluorescence
(R = 0.133, P = .054) and significantly with serum pentosidine (R = 0.159, P = .019). Stepwise multiple regression analyses reveal that skin
autofluorescence, but not serum pentosidine and IMT, was independently associated with low circulating EPCs. Of note, skin
autofluorescence was also inversely and independently associated with circulating progenitor cells. Thus, tissue accumulated, but not
circulating, advanced glycation end products may be a determinant of a decrease in circulating EPCs in ESRD subjects.
© 2011 Elsevier Inc. All rights reserved.
1. Introduction

Endothelial progenitor cells (EPCs) play a key role in the
maintenance and repair of vascular integrity in response to
endothelial injury [1-3]. Upon cytokine stimulation and
ischemic injury, EPCs can be mobilized from bone marrow,
home to ischemic tissue, and contribute to neovasculariza-
tion and angiogenesis [4-6]. Decreased number of circulating
EPCs is associated with risk of coronary artery disease and
cardiovascular mortality and morbidity [7-9].

Patients with diabetes mellitus and end-stage renal disease
(ESRD) are known to have increased risks for cardiovascular
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mortality and morbidity [10,11]. Most, but not all, of the
studies have shown that the numbers of circulating EPCs are
decreased in patients with ESRD [12-16] and diabetes
[17,18], the underlying mechanisms of which remained
poorly characterized. Age-dependent depression in circulat-
ing EPCs is also reported and is implicated in the risk for
cardiovascular diseases [19,20].

A common feature of aging, diabetes, and ESRD is the
accumulation of advanced glycation end products (AGEs)
[21], which is implicated in the pathogenesis of chronic
vascular complications [22-25]. We therefore reasoned that
decrease in number of circulating EPCs might be associated
with AGE accumulation in patients with ESRD. In the
present study, we examined the association between the
number of circulating EPCs, serum pentosidine, and skin
autofluorescence, a recently developed noninvasive measure
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for tissue AGE accumulation [26], in 212 ESRD patients.
We also measured carotid atherosclerosis, determined as
intimal-medial thickness (IMT) by ultrasound, to examine if
the association between AGEs and EPCs is independent of
the levels of atherosclerosis.
2. Methods

2.1. Subjects

This study was approved by the Ethics Committee at
Osaka City University Graduate School of Medicine
(approval no. 835). This study adheres to the Declaration
of Helsinki, and informed consent was obtained from all
subjects who participated in the study. The present study
included ESRD patients who were treated by regular
hemodialysis 3 times a week at Inoue Hospital, Suita,
Japan. Among 312 patients who agreed to participate, 212
patients (nondiabetic, 177; diabetic, 35) completed all
measurements including circulating EPCs, skin autofluores-
cence, serum pentosidine, and carotid atherosclerosis.
Table 1 summarizes the characteristics of the ESRD subjects.
Diabetic subjects were defined as those meeting the
following criteria: fasting plasma glucose greater than 126
mg/dL, casual plasma glucose greater than 200 mg/dL, or
history of treatment of diabetes. Presence of vascular
complications was diagnosed as described previously [27].
Table 1
Characteristics of the subjects

No. of subjects 212
Age (y) 59.9 ± 10.1
Sex (% male) 59.9
Etiology of ESRD (%)
Glomerulonephritis 63.7
Diabetic nephropathy 15.5
Polycystic kidney disease 6.6
Nephrosclerosis 1.4
Others 12.8

Diabetes (%) 16.5
Vascular complications (%) 27.8
Coronary heart diseases (%) 16.5
Cerebrovascular diseases (%) 10.2
Peripheral artery diseases (%) 7.5

Hemodialysis vintage (years) 13.0 (1.9-30.9)
Current smoking (%) 21.2
Body mass index (kg/m2) 21.4 ± 2.8
Systolic blood pressure (mm Hg) 149 ± 17
Hemoglobin (g/dL) 9.80 ± 1.04
Non-HDL cholesterol (mg/dL) 103.2 ± 32.5
HDL cholesterol (mg/dL) 47.6 ± 12.4
Calcium (mg/dL) 9.58 ± 0.81
Phosphate (mg/dL) 5.80 ± 1.35
Intact parathyroid hormone (pg/mL) 135 (10-1656)
Carotid IMT (mm) 0.762 ± 0.163
Serum pentosidine (μg/mL) 0.51 ± 0.18
Skin autofluorescence 0.018 ± 0.007

Continuous variables are summarized as mean ± SD, whereas median values
(limits of observed values) are shown for variables with skewed distribution.
2.2. Quantification of EPCs

Numbers of EPCs were measured by flow cytometry
essentially as described previously [16]. In brief, 4 mL of
peripheral blood was drawn; and mononuclear cells were
isolated by Ficoll density gradient centrifugation (Ficoll-
Paque PLUS; GE Healthcare, Buckinghamshire, UK).
Mononuclear cells were stained with fluorescein isothiocya-
nate–conjugated anti-CD34 monoclonal antibody (Beckman
Coulter, Fullerton, CA), PC5-conjugated anti-CD45 mAb
(Beckman Coulter), phycoerythrin-conjugated monoclonal
anti-CD133 antibody (Miltenyi Biotec, Bergisch Gladbach,
Germany), and allophycocyanin (activated protein C)-
conjugated anti-VEGF R2 (R&D Systems, Minneapolis,
MN). Samples were subjected to a 2-dimensional side scatter
fluorescence dot plot analysis (FACS CANTO; Becton-
Dickinson, Franklin Lakes, New Jersey). After appropriate
gating with low cytoplasmic granularity, cells were serially
gated with CD34+, low expression of CD45, CD133+, and
VEGFR2+ fraction, enabling quantification of CD34+

CD45low CD133+ VEGFR2+ cells (EPCs) per 106 mononu-
clear cells. In 14 healthy volunteers, numbers of EPCs and
endothelial colony-forming units determined by Endothelial
Progenitor Culture Assay (StemCell Technology, Vancou-
ver, BC, Canada) exhibited a linear relationship (r2 = 0.866).
The total numbers of CD34+ CD45low CD133+ cells were
also counted as progenitor cells (PCs). The intraassay
coefficient of variation of EPCs and PCs based on multiple
measurements of a sample was 8.6% and 3.4%, respectively.

2.3. Skin autofluorescence

Skin autofluorescence was assessed by the autofluores-
cence reader (AGE Reader; Diagnoptics, Groningen, the
Netherlands) as previously described in detail [26]. The
measure of autofluorescence used was the average light
intensity per nanometer in the range 420 to 600 nm divided
by the average light intensity per nanometer in the range 300
to 420 nm. The intraassay coefficient of variation based on
repeated measurements on the same day was 2.8% (n = 5).
For a nonwhite population, skin autofluorescence in
Japanese healthy volunteer was 0.013 ± 0.005 (n = 110)
and was found to be a predictor of arterial stiffness [28].

2.4. Ultrasonography

Ultrasonographic scanning of the carotid artery was
performed by an ultrasonic phase-locked echotracking
system that was equipped with a high-resolution real-time
scanner. The site of the most advanced atherosclerotic lesion
was examined in the longitudinal and transverse projections
of common carotid artery to record the maximum IMT as
previously described [29,30].

2.5. Biochemical analyses

Serum pentosidine levels were measured as previously
described [27]. Serum levels of total cholesterol and high-
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density lipoprotein (HDL) cholesterol were measured by
enzymatic methods adapted to an autoanalyzer (Hitachi
7470; Hitachi, Tokyo, Japan). Non-HDL cholesterol
was calculated by subtracting HDL cholesterol from
total cholesterol.

2.6. Statistical analyses

Statistical analyses were performed with StatView V
software (SAS Institute, Cary, NC). To evaluate relationship
between factors, simple regression analyses and stepwise
multiple regression analyses were performed. Findings of
P b .05 or F valueN 4.0 were considered significant.
3. Results

As shown in Fig. 1A, numbers of circulating EPCs were
significantly and inversely correlated with skin autofluor-
escence, but not with serum pentosidine, in ESRD subjects.
Circulating EPCs also tended to be inversely associated
with carotid atherosclerosis (Fig. 1B). Female, presence of
Fig. 1. A, The numbers of both circulating PCs and EPCs were inversely and
significantly correlated with skin autofluorescence, but not with serum
pentosidine, in 212 ESRD subjects. Endothelial progenitor cells were
quantified as CD34+ CD45low CD133+ VEGFR2+ cells per 106 mononuclear
cells by flow cytometry. Progenitor cells were defined as CD34+ CD45low

CD133+ cells. B, Intimal-medial thickness in carotid artery measured by
ultrasound tended to be inversely associated with circulating EPCs.
diabetes, low blood hemoglobin, and non-HDL cholesterol
were also associated with low circulating EPCs in ESRD
patients (Table 2). Carotid IMT tended to correlate with
skin autofluorescence (r = 0.133), whereas it was
significantly associated with serum pentosidine (r =
0.159) (Fig. 2A). As previous study demonstrated [31],
the relation between skin autofluorescence and AGE
plasma levels was completely absent in our subjects (Fig.
2B). To further determine the significance of skin
autofluorescence, serum pentosidine, and carotid athero-
sclerosis on circulating EPCs, stepwise multiple regression
analyses were performed (Table 3). In model 1, variables
included classic and nonclassic risk factors for cardiovas-
cular diseases in ESRD, but excluded carotid IMT, serum
pentosidine, and skin autofluorescence. In this model,
female, presence of diabetes, and low blood hemoglobin
were identified to be independently associated with low
circulating EPCs. In model 2, adding carotid IMT to model
1, significant relationships were not affected. Although
model 3, adding serum pentosidine to model 2, did not
affect the results, inclusion of skin autofluorescence to
model 2 (model 4) resulted in skin autofluorescence being
independently associated with low circulating EPCs
together with low blood hemoglobin. In this model, sex
and diabetes were not significantly associated with EPCs
any more. To further examine whether relation between
skin autofluorescence and circulating EPCs was indepen-
dent of blood hemoglobin, multiple regression analysis was
performed using age, diabetes, hemoglobin, carotid IMT,
and skin autofluorescence as variables (R2 = 0.109, P b
.001). Even in this model, skin autofluorescence (β =
able 2
imple regression analyses of factors associated with numbers of circulating
PCs and PCs

EPC PC

ge −0.075 −0.142⁎
ex (male = 0, female = 1) −0.236† −0.243†

iabetes (no = 0, yes = 1) −0.147⁎ −0.160⁎
ascular complications (no = 0, yes = 1) −0.081 −0.133
emodialysis vintage (short = 0, long = 1) −0.113 −0.165⁎
urrent smoking (no = 0, yes = 1) 0.099 0.076
ody mass index 0.052 0.109
ystolic blood pressure −0.046 −0.028
emoglobin 0.255† 0.235†

on-HDL cholesterol −0.145⁎ −0.119
DL cholesterol 0.053 0.064
alcium 0.075 0.003
hosphate 0.053 0.099
tact parathyroid hormone (logarithm transformed) 0.034 0.034
arotid IMT −0.125 −0.095
erum pentosidine −0.079 −0.081
kin autofluorescence −0.216† −0.305†

emodialysis vintages are classified into long (N13.0 years) and short
13.0 years) according to the median. R values (coefficients of correlation)

re shown.
⁎ P b .05.
† P b .01.
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Fig. 2. A, Skin autofluorescence and serum pentosidine show weak
correlation with carotid IMT. B, Lack of association between skin
autofluorescence and serum pentosidine.

able 3
tepwise multiple regression analyses of factors associated with numbers of
irculating EPCs and PCs

PCs

ariables Model 1 Model 2 Model 3 Model 4

ge NS NS NS NS
ex (male = 0, female = 1) −0.170⁎ −0.170⁎ −0.170⁎ NS
iabetes (no = 0, yes = 1) −0.148⁎ −0.148⁎ −0.148⁎ NS
ascular complications
(no = 0, yes = 1)

NS NS NS NS

emodialysis vintage
(short = 0, long = 1)

NS NS NS NS

urrent smoking (no = 0, yes = 1) NS NS NS NS
ody mass index NS NS NS NS
ystolic blood pressure NS NS NS NS
emoglobin 0.178⁎ 0.178⁎ 0.178⁎ 0.225⁎

on-HDL cholesterol NS NS NS NS
DL cholesterol NS NS NS NS
alcium NS NS NS NS
hosphate NS NS NS NS
tact parathyroid hormone
(logarithm transformed)

NS NS NS NS

arotid IMT – NS NS NS
erum pentosidine – – NS –
kin autofluorescence – – – −0.179⁎
2 0.107⁎ 0.107⁎ 0.107⁎ 0.096⁎

Cs

ariables Model 1 Model 2 Model 3 Model 4

ge NS NS NS NS
ex (male = 0, female = 1) −0.159⁎ −0.159⁎ −0.159⁎ NS
iabetes (no = 0, yes = 1) −0.197⁎ −0.197⁎ −0.197⁎ NS
ascular complications
(no = 0, yes = 1)

NS NS NS NS

emodialysis vintage
(short = 0, long = 1)

−0.180⁎ −0.180⁎ −0.180⁎ NS

urrent smoking (no = 0, yes = 1) NS NS NS NS
ody mass index NS NS NS NS
ystolic blood pressure NS NS NS NS
emoglobin 0.160⁎ 0.160⁎ 0.160⁎ 0.190⁎

on-HDL cholesterol NS NS NS NS
DL cholesterol NS NS NS NS
alcium NS NS NS NS
hosphate NS NS NS NS
tact parathyroid hormone
(logarithm transformed)

NS NS NS NS

arotid IMT – NS NS NS
erum pentosidine – – NS –
kin autofluorescence – – – −0.273⁎
2 0.137⁎ 0.137⁎ 0.137⁎ 0.128⁎

emodialysis duration (long; N13.0 years according to the median).
S = not significant. “–” indicates not included in variables.
⁎ F value N4.0.
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−0.142, P = .040) was significantly and inversely
associated with circulating EPCs, with the relation
independent of age (β = 0.030, P = .67), diabetes (β =
−0.105, P = .12), blood hemoglobin (β = 0.229, P b .001),
and carotid IMT (β = −0.075, P = .28).

We also examined the determinants of circulating PCs,
potential precursors of EPCs. Circulating PCs and EPCs
showed moderate correlation (R = 0.608, P b .001). As
shown in Fig. 1A, circulating PCs were significantly and
inversely associated with skin autofluorescence, whereas
serum pentosidine failed to be significantly correlated. The
relation between carotid IMT and circulating PCs was not
significant (Fig. 1B). Besides skin autofluorescence, higher
age, female, presence of diabetes, long hemodialysis
duration, and low blood hemoglobin levels were associated
with low circulating PCs (Table 2). Stepwise multiple
regression analyses revealed that female, presence of
diabetes, long hemodialysis vintage, and low hemoglobin
were independently associated with low circulating PCs
(model 1). As in the case of EPCs, addition of skin
autofluorescence to variables resulted in identification of
skin autofluorescence being independently associated with
low circulating PCs, with sex, diabetes, and dialysis duration
being expelled from significant variables correlated
(Model 4). Neither serum pentosidine nor carotid athero-
sclerosis level was significantly associated with circulating
PCs (model 2 or model 3). Similar to EPCs, in multiple
regression analysis using age, diabetes, hemoglobin, carotid
IMT, and skin autofluorescence as variables (R2 = 0.143, P b
.001), skin autofluorescence (β = −0.249, P b .001) was
significantly and inversely associated with circulating PCs,
with the relation independent of age (β = −0.040, P = .56),
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diabetes (β = −0.105, P = .12), blood hemoglobin (β = 0.180,
P = .006), and carotid IMT (β = −0.021, P = .76).
4. Discussion

This study is the first to demonstrate the potential
involvement of tissue AGE accumulation, but not
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circulating AGEs, in decrease in number of circulating
EPCs in humans. Moreover, the relation between tissue
AGEs and circulating EPCs was independent of the level of
subclinical atherosclerosis.

Recent flow cytometric technique enabled us to measure
samples large enough to make a solid conclusion [16,32,33].
As previously described [16], we defined CD34+ CD133+

CD45low VEGFR2+ cells as EPCs and used this fraction of
cells to examine regulation of EPCs in subjects with ESRD.
We also analyze PCs, defined as CD34+ CD133+ CD45low

cells, as previously reported [33]. Consistent with the
previous finding that EPCs are mainly derived from
CD34+ CD133+ CD45low PCs [34,35], number of PCs
exhibited a significant and positive correlation with that
of EPCs.

Both numbers and function of circulating EPCs have
been shown to be decreased in patients with ESRD [12-16]
and diabetes [12,13]. Because accumulation of AGEs is a
promising pathogenetic mechanism for complications in
both diabetes and ESRD, we reasoned that tissue or
circulating AGE levels might be associated with circulating
EPCs in subjects with ESRD. Our results clearly showed
that tissue AGE accumulation, but not circulating AGEs,
may be a determinant of low circulating EPCs. Importantly,
this association was independent of the potential con-
founders, including aging, sex, presence of diabetes,
history for cardiovascular diseases, and other classic risk
factors for atherosclerosis. Moreover, relation between
circulating EPCs and AGE accumulation was independent
of the level of carotid atherosclerosis, which is an
important surrogate marker for cardiovascular diseases,
and could be interrelated both with AGEs and circulating
EPCs. Serum pentosidine levels were shown to be
associated with carotid atherosclerosis in ESRD patients
with peritoneal dialysis [36] and diabetic patients [37],
which is in agreement with our current observations in
hemodialysis patients. Although we did not observe
significant correlation between IMT and circulating EPCs
as reported in type 1 diabetes mellitus patients [38],
previous reports did find significant correlation between
EPCs and carotid IMT in healthy [39] or with plaque
burden in patients with coronary disease [40].

In the current study, we have used carotid IMT as a
surrogate marker for subclinical atherosclerosis. However,
measurement of arterial stiffness by pulse wave velocity
(PWV), which is significantly and positively associated with
skin autofluorescence in ESRD subjects, could be a better
marker of subclinical atherosclerosis. In subjects (n = 101)
who are overlapped with previous report and have data for
PWV [28], multiple regression analysis (R2 = 0.124, P =
.026) revealed that skin autofluorescence was still signifi-
cantly and inversely associated with circulating PCs (β =
0.238, P = .020), with the relation independent of age,
diabetes, hemoglobin, and PWV. However, in these small
numbers of subjects, significant independent relation
between skin autofluorescence and EPCs was not observed
(data not shown), which may be the result of lack of enough
power due to small cohort size or of close relationship
between skin autofluorescence and PWV. Altogether, in
these observations, although subclinical atherosclerosis,
circulating or tissue AGEs, and circulating EPCs are
mutually interrelated in ESRD patients, tissue accumulated,
but not circulating, AGEs could be a determinant for a
decrease in circulating EPCs.

It is unclear at present how tissue AGEs, but not
circulating AGEs, affect circulating EPCs. Because skin
autofluorescence has been shown to correlate with tissue
levels of AGEs [26], one intriguing possibility is that skin
autofluorescence may reflect AGEs in bone marrow, which
could directly influence mobilization of PCs. Indeed, skin
autofluorescence, but not serum pentosidine, is also
inversely and independently associated with circulating
PCs in this study. It is reported that bone marrow
mononuclear cells obtained from diabetic mice have
abrogated angiogenic potential in postischemic revascular-
ization reaction [41], suggesting impairment of function or
decrease in number of PCs or EPCs at the level of bone
marrow. Because receptor for AGEs (RAGE) has recently
been shown to be expressed in PCs [42], EPC generation and
mobilization may be modulated by AGEs [43]. In rat uremic
model, we have preliminary observed that PC mobilization
induced by hind limb ischemia is inversely correlated with
carboxymethyllysine levels in bone marrow [44]. Although
these observations are in support of our hypothesis, this
should be directly proved by measuring bone marrow AGEs
in humans to examine its impact on PC mobilization in a
future study.

Skin autofluorescence has been found to be increased in
patients with diabetes or ESRD [45,46] and has been
shown to correlate with development of long-term
complications in diabetic patients [46,47]. In addition,
skin autofluorescence is a predictor of cardiovascular
mortality in diabetes and ESRD [48,49]. It is still not
entirely clear, however, how accumulation of AGEs could
contribute to increase in cardiovascular risk. We have
recently shown that AGE accumulation is an independent
predictor of arterial stiffness [28], a well-established risk
factor for cardiovascular mortality [50,51]. The present
findings suggest an alternative possibility that a decrease in
circulating EPCs, a well-defined risk predictor for cardio-
vascular diseases [7-9], may mediate the adverse effects of
tissue AGE accumulation in patients with ESRD. Because
AGE accumulation and RAGE expression could be
interrelated [52], the present findings may also be an
underlying mechanism for low circulating endogenous
secretory RAGE as a risk predictor for cardiovascular
events in ESRD subjects [27], which is an intriguing
question to be explored in a future study.

This study has one principal limitation. It is unclear
whether the skin autofluorescence measured to estimate
AGE accumulation represents AGE modification in the
bone marrow. Nevertheless, the present findings reveal
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important aspects of the pathogenesis and pathophysiol-
ogy of cardiovascular diseases in ESRD and provide
insights into therapeutic target for the prevention of
these disorders.
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