
nature reviews | nephrology  volume 6 | FeBruarY 2010 | 83

Center for Translational 
and Advanced 
Research, Tohoku 
University Graduate 
School of Medicine, 
2‑1 Seiryo‑Machi, 
Aoba‑ku, Sendai, Miyagi 
980‑8575, Japan 
(T. Miyata). Service de 
Nephrologie, Universite 
Catholique de Louvain 
Medical School, 
10 Avenue Hippocrate, 
B‑1200 Brussels, 
Belgium (C. van 
ypersele de Strihou).

Correspondence to: 
T. Miyata  
t‑miyata@ 
mail.tains.tohoku.ac.jp

Diabetic nephropathy: a disorder of oxygen 
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Abstract | Chronic hypoxia induces sequential abnormalities in oxygen metabolism (for example, oxidative 
stress, nitrosative stress, advanced glycation, carbonyl stress, endoplasmic reticulum stress) in the 
kidneys of individuals with diabetes. Identification of these abnormalities improves our understanding of 
therapeutic benefits that can be achieved with antihypertensive agents, the control of hyperglycemia and/or 
hyperinsulinemia and the dietary correction of obesity. Key to the body’s defense against hypoxia is hypoxia‑
inducible factor, the activity of which is modulated by prolyl hydroxylases (PHDs)—oxygen sensors whose 
inhibition may prove therapeutic. Renal benefits of small‑molecule PHD inhibitors have been documented 
in several animal models, including those of diabetic nephropathy. Three different PHD isoforms have been 
identified (PHD1, PHD2 and PHD3) and their respective roles have been delineated in knockout mouse 
studies. Unfortunately, none of the current inhibitors is specific for a distinct PHD isoform. Nonspecific 
inhibition of PHDs might induce adverse effects, such as those associated with PHD2 inhibition. Specific 
disruption of PHD1 induces hypoxic tolerance, without angiogenesis and erythrocytosis, through the 
reprogramming of basal oxygen metabolism and decreased generation of oxidative stress in hypoxic 
mitochondria. A specific PHD1 inhibitor might, therefore, offer a novel therapy for abnormal oxygen metabolism 
not only in the diabetic kidney, but also in other diseases for which hypoxia is a final, common pathway.
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Introduction
the poor outcome associated with diabetic nephropathy 
has stimulated the development of numerous therapeutic 
options for this disorder.1 Prevention of this disorder and 
of its associated severe complications undoubtedly relies 
on a multipronged approach that targets factors such as 
blood pressure, and serum levels of glucose, insulin and 
lipids. Despite notable advances in the treatment of dia-
betes mellitus, current therapies do not fully prevent the 
associated renal complications. identification of addi-
tional causative factors that lead to adverse renal effects 
and the development of novel agents to prevent or treat 
them are urgently needed.

in this review, the roles of oxygen metabolism in the 
development and progression of diabetic nephropathy 
are explored and the various abnormalities of oxygen 
metabolism (that is, hypoxia, oxidative stress, nitrosa-
tive stress and advanced glycation and/or carbonyl stress) 
and innovative therapeutic targets are discussed.

Abnormal oxygen metabolism
oxidative stress
Generalized versus local oxidative stress
oxidative stress is a state of accumulation of reactive 
oxygen species (ros), which can cause disruption 
of normal cell functions. the presence and localiza-
tion of oxidative stress in diabetes have been disputed. 

williamson et al. demonstrated an increased cellular 
naDH to naD+ ratio in diabetes and suggested that the 
disease is associated with a state of reductive stress and 
pseudo-hypoxia rather than a state of oxidative stress.2 
subsequently, the presence of oxidative stress in diabetes 
was postulated on the basis of indirect evidence, includ-
ing an increased ratio of naDP+ to naDPH and of oxi-
dized to reduced glutathione.3–5 such a redox imbalance 
may however rely possibly on nonoxidative mechanisms, 
such as the polyol pathway, so that their presence does 
not necessarily indicate oxidative stress. Baynes and 
colleagues revisited this issue with a new methodology 
centered on oxidative protein modifications and argued 
against generalized oxidative stress in diabetes: after 
adjustment for age, they showed that levels of oxidized 
amino acids—ortho-tyrosine and methionine sulfoxide—
in skin collagen were virtually identical in individuals 
with and without diabetes.6

in contrast with generalized oxidative stress, our 
group focused on local oxidative stress in the kidneys 
of individuals with diabetes.7 advanced glycation 
end products (aGes), generated nonenzymatically 
through the bonding of sugars with proteins, include 
two differ ent classes of structures: those whose produc-
tion is dependent on oxidative stress (pentosidine and 
Nε-[carboxymethyl]lysine [Cml]) and those produced 
independently of oxidative stress (pyrraline). if tissue 
aGe formation depends solely on hyperglycemia, all aGe  
structures should be detected in diabetic kidneys. we 

Competing interests
The authors declare no competing interests.

RevIewS

nrneph_211_FEB10.indd   83 8/1/10   16:08:41

© 20  Macmillan Publishers Limited. All rights reserved10



84 | FEBRUARY 2010 | volUmE 6 www.nature.com/nrneph

established that only those that were dependent on oxi-
dative stress were present in diabetic glomerular lesions, 
whereas pyrraline was absent. we also saw other protein 
modifications derived from the oxidation of lipids (for 
example, malondialdehyde-lysine). thus, we postulated 
the presence of local, rather than general ized, oxidative 
stress,7,8 which has been subsequently confirmed in dia-
betic vascular lesions.9 substantial supporting evidence 
for this feature has since been gathered in vitro and 
in vivo in animal and human studies.10,11 altogether, dia-
betes is associated not with generalized but rather with 
local oxidative stress.

Causes of oxidative stress
the primary cause of local oxidative stress in the dia-
betic kidney remains debated, as numerous enzymatic 
and nonenzymatic mechanisms lead to production 
of ros. activation of the renin–angiotensin system 
(ras),12,13 naDPH oxidase activation,14–16 nitric oxide 
synthase (nos) and its metabolites (for example, reac-
tive nitrogen species),17 mitochondrial respiratory 
chain reaction abnormalities,18,19 the polyol pathway,11 
increased concentrations of aGes and reactive carbonyl 
compounds,7,8,20 auto-oxidation of glucose and lipids, 
Fenton reactions catalyzed by transition-metal ions,21 
and depletion of glutathione and other sulfhydryls22 are 
all recognized factors.

more recently, hypoxia, detailed in the latter part of 
this review, has been strongly implicated as a cause 
of oxidative stress in diabetic nephropathy. aragones 
et al.23 have demonstrated in mice that disruption of the 
gene encoding prolyl hydroxylase-1 (PHD1), an intra-
cellular oxygen sensor, lowers oxygen consumption in 
the mitochondria of skeletal muscle, with an attendant 
reduction in oxidative stress and, eventually, enhances 
cellular survival during hypoxia. thus, hypoxia induces 
energy depletion and generates oxidative stress. this 
hypothesis is supported by in vitro studies, which have 
shown that the activation of hypoxia-inducible factor 

Key points

Chronic hypoxia induces sequential abnormalities in oxygen metabolism in  ■
the diabetic kidney, leading to oxidative stress, nitrosative stress, advanced 
glycation, carbonyl stress and endoplasmic reticulum stress

Understanding the key features of abnormal oxygen metabolism improves the  ■
interpretation of the therapeutic benefits achieved by antihypertensive therapy, 
the control of hyperglycemia and/or hyperinsulinemia and the dietary correction 
of obesity

Activity of hypoxia‑inducible factor—central to the defense against hypoxia—is  ■
modulated by prolyl hydroxylases (PHDs), which act as oxygen sensors

Three PHD isoforms have been identified and their respective roles have been  ■
elucidated, but none of the current PHD inhibitors exhibits absolute specificity 
for any subtype

Disruption of PHD1 induces hypoxic tolerance by reducing oxidative stress  ■
in hypoxic mitochondria, indicating that a specific PHD1 inhibitor could be an 
innovative treatment for abnormal oxygen metabolism in the diabetic kidney

Treatment of chronic hypoxia might apply to other chronic diseases that share  ■
a final common pathway, including a wide variety of kidney disorders, ischemic 
heart disease, and stroke

(HiF)-1α reduces ros generation,24 whereas inhibition 
of this transcriptional regulator worsens oxidative stress 
by increased ros generation.25

the existence of both an increase and a decrease in 
oxidative stress during hypoxia seems paradoxical. 
still, both situations in oxygen tension are known to 
lead to oxidative stress. During hypoxia, the cell relies 
on anaerobic glycolysis to generate atP, although the 
residual low oxygen supply supports some level of oxida-
tive atP production through the tricarboxylic acid cycle 
and electron transport chain. in hypoxic cells, electron 
leakage from the mitochondrial electron transport chain 
occurs and results in excessive ros formation (that is, 
oxidative stress). reoxygenation or high oxygen levels 
following ischemia further exaggerates ros generation. 
this concept suggests a role for agents that scavenge 
ros or prevent their formation in ischemic diseases.26 
Concurrently, oxidative stress exacerbates the status of 
hypoxia. In vitro studies in rat proximal tubular cells and 
in vivo studies of streptozotocin-induced diabetes in rats 
show that high glucose levels blunts the activation of HiF, 
an effect that is fully reversed by treatment with anti-
oxidants, such as α-tocopherol or tempol.27,28 activation 
of naDPH oxidase also aggravates renal hypoxia.29 
Hypoxia and oxidative stress are thus closely linked in 
the diabetic kidney.

hypoxia
Local hypoxia
oxygen is essential to various biometabolic processes, 
including oxidative phosphorylation during mito-
chondrial respiration. all organs, including the kidney, 
depend on a sufficient and consistent supply of oxygen. 
the role of chronic hypoxia in the progression of chronic 
kidney disease was originally proposed by norman and 
Fine30 and has been validated in a variety of human 
and experimental kidney diseases, including diabetic 
nephro pathy.31,32 ries et al. first visualized tissue hypoxia 
in the kidneys of rats with streptozotocin-induced dia-
betes by use of blood oxygen level-dependent imaging.33 
Presence of chronic hypoxia was subsequently confirmed 
in the same model by rosenberger et al. by means of 
pimonid azole staining for hypoxia and HiF induction.28 

tissue hypoxia was also demonstrated in a rat model of  
type 2 diabetes.13

adaptation to hypoxia differs according to the type 
of renal cell affected. During normal nephrogenesis, 
oxygen tension regulates the developing kidney in a 
cell-specific manner; HiF-1α is primarily involved in 
tubulogenesis, HiF-2α (also known as ePas1) in renal 
vasculogenesis, and both isoforms in glomerulogenesis.34 
in ex vivo isolated perfused rat kidneys, differences in 
responses to HiF between collecting ducts and medul-
lary thick ascending limbs correlate with cell viability 
under hypoxic stress caused by radiocontrast-induced 
acute renal failure.35

the localization of hypoxia has not been precisely 
determined in the kidney because few methods are able 
to identify and quantify tissue oxygenation at the cellular 
level. tanaka et al. used a hypoxia-responsive reporter 
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vector to generate a novel hypoxia-sensing transgenic 
rat.36 the researchers identified diffuse cortical hypoxia 
in rats with puromycin aminonucleoside-induced 
nephrotic syndrome and focal and segmental hypoxia 
in a remnant kidney model of kidney damage. in both 
models the degree of hypoxia was positively correlated 
with microscopic tubulointerstitial injury. localization 
of tissue hypoxia may, therefore, differ according to the 
type of renal disease, including diabetic nephropathy but 
this hypothesis remains to be proven.

Causes of hypoxia
Causes of chronic hypoxia in the diabetic kidney are 
depicted in Figure 1. Glomerular efferent arterioles enter 
the peritubular capillary plexus, enabling provision of 
oxygen to tubular and interstitial cells. in individuals 
with diabetes, glomerular and vascular lesions damage 
efferent arterioles and reduce the number of peritubular 
capillaries, which in turn causes a reduction in oxygen 
diffusion to tubulointerstitial cells, eventually leading to 
tubular dysfunction and fibrosis.31 the postglomerular 
peritubular blood flow is further decreased by vaso-
active substances generated in the diabetic kidney, such 
as angiotensin ii and nitric oxide (no).37 Palm et al. 
showed that the latter regulates oxygen availability.38 no 
concentrations are reduced in individuals with diabetes, 
which causes hypoxia in the renal medulla. anemia 
associ ated with chronic kidney disease also hinders 
oxygen supply.39,40

in addition to the notable decrease in oxygen supply, 
oxygen demand is increased in the outer medulla tubule 
of diabetic kidneys. remnant nephrons compensate for 
tubular nephron loss with an attendant increase in tubular 
transport and, hence, more energy consumption.41

Effects of abnormal oxygen metabolism
Hypoxia is not only a powerful cause of local oxida-
tive stress in diabetic the kidney, but also has an impact 
on various biological reactions linked to oxygen  
metabolism (Figure 2).

nitrosative stress
no regulates numerous kidney functions, including 
renal hemodynamics, renin release, and extracellular 
fluid volume.42 Deficiency or excess of no can con-
tribute to disease. animal models of no deficiency 
show develop ment of hypertension, proteinuria, and 
glomerulo sclerosis.43 in rat diabetic kidneys, no pro-
duction and bioavailability have been shown to progres-
sively decline,44 influencing both the use of and supply 
of oxygen.45 overproduction of superoxide and other 
related ros, resulting in oxidative stress, blunts the 
biological effects of no. superoxide combined with no 
forms peroxynitrite, a cytotoxic oxidant,17 which acti-
vates the nuclear enzyme, poly (aDP-ribose) polymerase 
(ParP).46 in turn, ParP inhibits the activity of the 
glyco lytic enzyme glyceraldehyde-3-phoshate dehydro-
genase,47 eventually activating the polyol pathway, the 
formation of aGes, protein kinase C and the hexo-
samine pathway,18 all of which have been implicated in 

the genesis of diabetic nephropathy. thus, ros and reac-
tive nitrogen species (that is, nitrosative stress), trigger 
subsequent cellular dysfunction in diabetes through a 
multitude of mechanisms.42

Advanced glycation and carbonyl stress
oxidative stress modifies proteins either directly through 
the oxidation of amino acids by ros or indirectly by an 
increased generation of reactive carbonyl compounds 
from carbohydrates and lipids (that is, carbonyl stress).48 
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Figure 1 | Causes of hypoxia in the diabetic kidney. During hypoxia, oxygen supply 
is substantially decreased, especially in tubular segments of the inner medulla, 
through a multitude of mechanisms. (1) The number of peritubular capillaries is 
decreased. The postglomerular peritubular blood flow is reduced (2) by 
angiotensin II and nitric oxide, and (3) by anemia. (4) Oxygen demand is also 
increased in the tubule of the outer medulla of the diabetic kidney due to 
compensation for the tubular loss of nephrons.
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Figure 2 | The impact of impaired oxygen metabolism in the 
diabetic kidney on various biological reactions linked to 
oxygen metabolism.
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in turn, the latter process stimulates the production of 
aGes. a causal role of oxidative stress in the forma-
tion of aGes is supported by the correlation observed 
in diabetic and uremic serum between pentosidine (an  
aGe) and markers of oxidation, such as dehydro ascorbate 
and advanced oxidation protein products,49,50 as well 
as by the co-localization of oxidation-dependent aGe 
structures and lipid peroxidation products in diabetic  
glomerular lesions.7,8

reactive carbonyl compounds also interfere with various 
cellular functions, independently of the effect of aGe 
modification of proteins, and influence intra cellular sig-
naling by multiple pathways,51 for example, by interacting  
with the receptor for aGes.52

Mitochondrial dysfunction
impaired oxygen metabolism affects various intracellular 
organelles. the function of mitochondria is influenced 
by several factors, including hypoxia, oxidative stress, 
and no.53 During oxidative production of atP through 
the tricarboxylic acid cycle and electron transport chain, 
ros generation increases substantially when cells are 
partially deprived of oxygen.

endoplasmic reticulum stress
the function of the endoplasmic reticulum (er) is also 
modified by hypoxia and oxidative stress.54 the er has 
a critical role in the processing, folding, and transport of 
newly synthesized proteins. all cells are able to regulate 
the capacity of the er to process synthesized proteins 
and can adapt to an imbalance between protein load and 
folding capacity—er stress—which has been implicated 
in the pathogenesis of diabetic nephropathy.55 Defenses 
against er stress include the unfolded protein response, 
which includes a transient attenuation of new protein 
synthesis, the degradation of misfolded proteins, and the 

expression of a variety of antistress proteins. excessive 
er stress tips the balance beyond the limit of the cell-
ular unfolded protein response, and occasionally leads 
to apoptosis.

impaired oxygen metabolism
the phenomena stemming from hypoxia and its conse-
quences are tentatively integrated in a hypothetical 
scheme depicted in Figure 3. the inter-relationship 
between these harmful chain reactions is so complex 
that a single culprit might not account for the alterations 
seen in diabetic nephropathy. Furthermore, prevention 
of renal consequences (for example, tubulointerstitial 
fibrosis, podocyte injury, mesangial activation, and 
macro phage infiltration) might, in theory, rely on many 
more intermediates whose actual contribution to renal 
alterations remains to be determined. whatever the 
sequential events of diabetic renal injury, the conse-
quences of hypoxia and the subsequent impairment in 
oxygen metabolism have a pivotal role in the genesis and 
progression of the diabetic kidney. therapies that inter-
fere with impaired oxygen metabolism may, therefore, 
prove clinically useful.

Actions of current therapies
understanding the key features of abnormal oxygen 
metabolism in the diabetic kidney assists in the 
interpreta tion of current therapeutic benefits.

Antihypertensive agents (rAS inhibition)
inhibition of the ras with antihypertensive agents, such 
as angiotensin-converting-enzyme inhibitors, angio-
tensin-ii-receptor antagonists, or direct renin inhibitors, 
achieves better renoprotection regardless of diabetes status 
than other antihypertensive drugs.56–61 angiotensin-ii-
receptor antagonists and angiotensin-converting-enzyme  
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Figure 3 | Interplay between hemodynamic or metabolic abnormalities and impaired oxygen metabolism in the diabetic 
kidney. Abbreviations: AGe, advanced glycation end product; CTGF, connective tissue growth factor; PAI‑1, plasminogen 
activator inhibitor 1; PARP, poly (ADP‑ribose) polymerase; RAS, renin–angiotensin system; TGF‑β, transforming growth 
factor β.
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inhibitors are used as standard treatments for diabetic 
nephropathy, whether systemic hypertension is present 
or not, as ras inhibitors provide renoprotection inde-
pendently of lowering blood pressure.56–61 this dissocia-
tion is probably a result of the substantially higher 
angiotensin ii concentrations within the kidney than in 
the systemic circulation.62

some studies suggest that ras-independent effects of 
angiotensin-ii-receptor antagonists include the improve-
ment of oxygen metabolism in the kidney independently 
of lowering blood pressure. in addition to the protective 
benefits conferred by angiotensin ii type 1 receptor (at1) 
blockade and lowering blood pressure, angiotensin-ii-
receptor antagonists (or angiotensin-converting-enzyme 
inhibitors) have the unique ability to correct not only 
tissue hypoxia (by an increase in postglomerular peri-
tubular blood flow63 or through receptor activation of 
angiotensin ii type 2 receptor and no production64) but 
also to correct oxidative stress and nitrosative stress,65,66 
carbonyl stress and advanced glycation,67,68 redox  
imbalance69 and er stress.70

to investigate the mechanisms by which angiotensin-ii-  
receptor antagonists confer these protective benefits, we 
synthesized a novel, nontoxic angiotensin-ii-receptor 
antagonist derivative, r-147,176, characterized by a weak 
affinity for the at1 (6,700 times less effective than olme-
sartan in at1-binding inhibition), but with an ability 
to confer striking inhibition of oxidative stress and 
advanced glycation.71 Despite a minimal effect on blood 
pressure, r-147,176 provided notable reno protection 
in two differ ent rat models of type 2 dia betes—(sHr/
nDmcr-cp and Zucker diabetic fatty rats).71 the renal 
benefit of angiotensin-ii-receptor antagonist therapy 
seems, therefore, to depend partly on the potent 
inhibi tion of oxidative stress and advanced glycation. 
r-147,176, like angiotensin-ii-receptor antagonists, 
protects not only the kidney but also brain cells in an 
experimental stroke model in rats. this finding suggests 
that inhibition of oxidative stress and advanced glycation 
provides benefits in a broad spectrum of renal cardio-
vascular disorders.72 whether this compound corrects 
tissue hypoxia remains undetermined.

Control of hyperglycemia and hyperinsulinemia
in addition to the critical role of hyperglycemia,73 insulin 
resistance or hyperinsulinemia have important roles in 
the genesis of diabetic renal injury.74 insulin sensitizers 
are, therefore, recommended for patients with diabetes 
and nephropathy who are also obese.

the renal benefits of insulin and pioglitazone (an 
insulin sensitizer) are associated with a reduction in 
hypoxia,75 oxidative stress,76 nitrosative stress77 and 
advanced glycation.76 Katavetin et al. have shown in a 
rat model of streptozotocin-induced diabetes that hyper-
glycemia blunts HiF activation, and that this effect is fully 
reversed by insulin treatment.27 in a rat model of hyper-
tensive type 2 diabetes (sHr/nDmcr-cp), we demon-
strated that insulin and pioglitazone equally reduce renal 
accumulation of aGes and markers of oxidative stress.76 
in contrast with insulin, pioglitazone caused a substantial 

decrease in plasma insulin levels, and afforded a markedly 
better renoprotection. the explanation for this puzzling 
fact rests on the ability of pioglitazone to reduce the renal 
expression of transforming growth factor β. the latter 
together with hyperinsulinemia might, therefore, prove 
to be a useful therapeutic target, independent of glycemic 
control and an impaired oxygen metabolism.78

Dietary correction of obesity
restriction of energy intake reduces oxidative stress 
in experimental animals.79,80 evidence supports a link 
between obesity and hypoxia.81,82 Crujeiras et al. demon-
strated that energy restriction in obese individuals 
improves mitochondrial function through the reduction 
of oxidative stress.83

in an obese rat model of type 2 diabetes (sHr/
nDmcr-cp), restriction of caloric intake by 30% for 
20 weeks corrected obesity.84 unlike in human studies, 
caloric restriction was associated with a mild rather 
than a substantial fall in levels of hemoglobin a1c. 
nevertheless, despite unchanged blood pressure, hyper-
glycemia and hyperinsulinemia, proteinuria and histo-
logical abnormalities of the kidney were prevented.84 
renal damage was impressively correlated not only with 
body weight but also with the renal content of aGes and 
the degree of oxidative stress.84 renoprotection in this 
model is dependent, therefore, upon a reduction in oxi-
dative stress but remains independant of hypertension 
and hyperglycemia.

improvement of abnormal oxygen metabolism
targets of current therapies are numerous and hetero-
geneous (for example, blood pressure, glucose, insulin and 
obesity). in experimental models of diabetes, including 
ours in hypertensive, obese, type 2 diabetic rats,85 reno-
protection is not necessarily linked to blood pressure or 
glycemic control but, interestingly, seems to be associated  
with an improved oxygen metabolism (table 1).

Potential future therapeutic targets
several mechanisms include potential targets for  
defense against abnormal oxygen metabolism in  
diabetic nephropathy.

hypoxia-inducible factor
Defense against hypoxia hinges upon HiF,86,87 the 
activation of which induces the expression of a broad 
range of genes that participate in erythrocytosis, angio-
genesis, glucose metabolism, or cell proliferation 
and survival, with the eventual protection of hypoxic  
tissues (Figure 4).

HiF-α is constitutively transcribed and translated, 
and its levels are primarily regulated by the rate of 
degrada tion. oxygen affects the stability of HiF-α 
through enzymatic hydroxylation by PHDs, which only 
occurs under normoxic conditions.88,89 the hydroxy-
lated HiF-α is recognized by von Hippel–lindau 
tumor suppressor protein,90,91 which functions as an e3 
ubiqui tin ligase, and is rapidly degraded by the protea-
some.92,93 nonhydroxylated HiF-α cannot interact with 
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von Hippel–lindau tumor suppressor protein and is, 
therefore, stabilized. nonhydroxylated HiF-α binds 
to the heterodimeric partner HiF-β, localized mainly  
in the nucleus,94 and transactivates genes involved in the 
adapta tion to hypoxic–ischemic stress.

three isoforms of  the  HiF-α subunit  have 
been identified—HiF-1α, HiF-2α (also known as  
ePas1) and HiF-3α.95 HiF-1α and HiF-2α are structur-
ally and functionally similar. By contrast, HiF-3α lacks 
the structures for transactivation that are found in the 
C-termini of HiF-1α and HiF-2α, suggesting an alter-
native role as a negative regulator of hypoxia-inducible 
gene expression.

the distribution of HiF-1α is rather ubiquitous, 
whereas HiF-2α is localized in certain cell types:34 for 
example, in the kidney, HiF-1α is expressed in tubules, 
but HiF-2α is confined to endothelial and inter stitial 
cells. a study that disrupted the genes that encode 
HiF-1α or HiF-2α in mice revealed that HiF-2α func-
tions as a physiological regulator of erythropoietin.96 
HiF-2α is indeed responsible for familial erythro cytosis 
in humans97 and for raised hemoglobin concentra-
tions in polycystic kidney disease (pericystic hypoxia 
leading to HiF-2α induction).98 in addition, as described 
below, HiF-2α has a crucial role in defense against  
oxidative stress.23,99

therapeutic approaches that target HiF would be 
clinically of little benefit if this transcription factor 
were maximally activated under pathological condi-
tions. Fortunately, HiF activation is suboptimal, as 
illustrated by the increase in its levels with antioxidant 
therapy in rats with diabetic kidneys.27,28 Data obtained 
in a rat model of rhabdomyolysis also suggest that cell-
ular adaptation to hypoxia is limited to certain cells 

within a relatively short period of time, supporting the 
potential therapeutic usefulness of efforts to extend 
these adaptational responses.100 Finally, the amount of 
HiF-1α detected in acute ischemia is substantially lower 
than that seen in animals exposed to carbon monoxide, 
which acts as a HiF activator that supports the sub-
optimal activation of HiFs in experimental renal isch-
emia.101 Further, HiF activation might prove beneficial 
for renoprotection. in agreement with this contention, 
Hill et al. induced renal ischemia reperfusion injury in 
knockout mice (for genes encoding either HiF-1α or 
HiF-2α) and found that renal injury was more severe 
in the knockout mice than in wild-type controls from 
the same litter.101

various potential options for increasing HiF activ-
ity are available for exploration. as mentioned above, 
HiF-α is constitutively transcribed but degraded 
through the oxygen-dependent hydroxylation of spe-
cific proline residues by PHDs. inhibition of PHDs 
should, therefore, be an efficient approach to increase 
HiF activation. asparagine-β hydroxylase hydroxylates 
the specific aspara gine residue within the C-terminal 
activation domain of HiF-1α and blocks binding to the  
trans criptional co-activator P300, thus preventing 
the subsequent transcription of downstream genes.102 
Pharmacological inhibition of this one enzyme, 
however, might affect the full range of HiF-activating 
genes.103 Furthermore, asparagine-β hydroxylase 
remains active at lower oxygen concentrations than 
PHDs and, therefore, might suppress the activity of 
HiF-1α proteins that escape destruction in moderate 
hypoxia.103 thus, current studies of HiF activity are 
focusing on the inhibition of PHDs by small- molecule 
compounds to modulate HiF activity.

Table 1 | Summary of animal experiments of renoprotection, oxygen metabolism, hemodynamics and metabolism

outcome Treatments

Caloric 
restriction

Antihypertensive agents pioglitazone insulin Cobalt Age inhibitor 
(r147176)

ArB CCB β-blocker

Renoprotection + + – – + ± + +

Oxygen metabolism

AGe inhibition + + – – + + + +

Antioxidative stress + + – – + + + +

Hypoxia correction ND + – – + + + ND

Hemodynamics

BP lowering – + + + – – – ±

RAS inhibition – + – – – – – ±

Metabolism

Obesity correction + – – – worsening – – –

Glycemic control + – – – + + – –

Lipid lowering + + – – + + – –

Hyperinsulinemia 
correction

– – – – + worsening – –

References* 84 13, 68 13 13 75, 76 27, 76 110 71

*In hypertensive, type 2 diabetic rats, SHR/NDmcr‑cp;13,68,71,76,84,110 streptozotocin‑induced diabetic rats;27 db/db mice.75 Abbreviations: AGe, advanced glycation 
end product; ARB, angiotensin receptor blocker; BP, blood pressure; CCB, calcium channel blocker; ND, not determined; RAS, renin–angiotensin system.
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prolyl hydroxylases
Nonspecific inhibitors
PHDs belong to the Fe2+ and 2-oxoglutarate-dependent 
dioxygenase superfamily, which incorporate both atoms of 
molecular oxygen into their substrates.95 one oxygen atom 
is used in the oxidative decarboxylation of 2-oxoglutarate 
and yields succinate and carbon dioxide, whereas the other 
atom is incorporated directly into the oxidized proline 
residue of HiF-α. PHDs are called oxygen sensors because 
their activity rigorously depends on oxygen tension.104

iron is essential for PHD activity, so use of transition-
metal chelators could potentially inhibit PHD activ-
ity. Cobalt chloride also inhibits PHD activity through 
intracellular depletion of ascorbate, which is neces-
sary for iron activity.105 Chemical preconditioning with 
cobalt chloride has been shown to protect kidneys in 
a variety of experimental models, including ischemic 
reper fusion,106 progressive uninephrectomized anti-
thy1 nephritis,107 remnant kidney,108 cisplatin nephro-
pathy,109 and a hypertensive rat model of type 2 diabetes 
(sHr/nDmcr-cp).110 in the latter model, cobalt chlo-
ride administered for 20 weeks lessened proteinuria 
and histo logical kidney injury, despite sustained hyper-
tension and metabolic abnormalities. renal improve-
ment is para lleled by a marked reduction in the renal 
expression of HiF-regulated gene products, including 

erythropoietin, vascular endothelial growth factor (veGF), 
and heme oxygenase 1, and by reduced renal production of  
transforming growth factor β and aGes.

the erythropoietic effect of cobalt has been established 
in humans since the 1940s.111,112 in the 1970s, cobalt chlo-
ride was used in the treatment of anemia associated with 
chronic renal failure.113 unfortunately, this treatment 
proved toxic and its clinical use was discontinued.

less cumbersome, nontoxic, small-molecule inhibi-
tors for PHDs have been investigated.104 Binding  
of the substrate 2-oxoglutarate to the catalytic domain of 
PHDs seems to be essential for enzymatic PHD activity. 
thus, chemical compounds with structures that mimic 
2-oxoglutarate (for example, N-oxalylglycine [dimethyl-
oxalylglycine],114,115 N-oxalyl-D-phenylalanine,116 and 
l-mimosine101) inhibit PHD activity.

we synthesized two novel inhibitors of PHDs (tm6008 
and tm6089) to test a docking simulation strategy based 
on the three-dimensional protein structure of human 
PHD2.117 Both compounds compete with HiF and bind to 
the active site within the PHD2 molecule where HiF binds 
(Figure 5). as anticipated, given orally, the compounds 
stimulated HiF activity in various organs of transgenic 
rats that expressed a hypoxia-responsive reporter vector. 
Given locally, the compounds induced angiogenesis in a 
mouse sponge assay.117
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another small-molecule inhibitor of PHD, FG4487, 
also offers renal benefits. Given intraperitoneally in a 
rat model of ischemic acute renal failure, the compound 

activated HiF-1α and HiF-2α, induced the expression 
of HiF target genes, ameliorated tubular injury and 
eventually improved renal function.118 a similar reno-
protective effect has been demonstrated for other PHD 
inhibitors, such as l-mimosine and dimethyloxalyl-
glycine,101 both of which increase expression of HiF-1α 
and HiF-2α and protect against renal ischemic injury by 
decreasing the number of apoptotic cells in the absence 
of angiogenesis.

Specific inhibitors
nonspecific inhibition of HiF degradation can augment 
production of veGF and erythropoietin, both of which 
have proven detrimental effects in human diabetic 
retino pathy.119 Dissociation of the benefits of HiF activa-
tion from its effects on veGF and erythropoietin should 
prove helpful.

three different PHD isoforms have been identified—
PHD1, PHD2, PHD395 (encoded by EGLN2, EGLN1 and 
EGLN3, respectively)—each of which has its own tissue 
and subcellular distribution:120 PHD1 is exclusively 
nuclear; PHD2 is mainly cytoplasmic but shuttles between 
the nucleus and cytoplasm;121 and PHD3 is present in both 
cytoplasm and nucleus. PHD2 acts as a decisive oxygen 
sensor in the HiF degradation pathway.122 in rat kidneys, 
all three isoforms of PHDs are expressed but PHD2 is 
the most abundant.123 PHDs are especially abundant in 
tubular segments of the inner medulla where oxygen 
tension is physiologically low.124 Despite causing a reduc-
tion in PHD activity, hypoxia induces the expression of 
PHD2 and PHD3 through upregulation of HiF-1α.123 this 
effect ensures rapid removal of HiF-α after reoxygena-
tion. raised concentrations of no and ros also reduce 
PHD activity,122,124 but again result in a feedback loop 
that causes an upregulation of PHD expression because 
of an accumulation of HiF-α. Different levels of hypoxia 
signaling may be associated with the triggering of differ-
ent feedback loops.125 PHD activity changes according to 
the type of renal injury: for example, cisplatin-induced 
renal injury in rats causes notable reductions in PHD2 
and PHD3 activities, but no change is seen in a rat model 
of contrast-media-induced nephropathy.126

the roles of the three PHD isoforms have been delin-
eated by the specific disruption of each PHD gene 
(Figure 6). the angiogenic phenotypes of mice with 
targeted disruptions of these genes reveals that knock-
out of the genes encoding PHD1 and PHD3 does not 
yield apparent angiogenic defects.127 By contrast, broad-
 spectrum, conditional knockout of the gene encoding 
PHD2 leads to increased production of veGF and hyper-
active angiogenesis, with the formation of mature and 
perfused blood vessels. in agreement with these observa-
tions, tm6008 potentially binding to human PHD2 
in a docking simulation study induces angio genesis 
in mice.117 PHD3 is also involved in angiogenesis and 
silencing of the gene encoding PHD3 provided a better 
therapeutic revascularization than silencing of the gene 
encoding PHD2 in mice with hindlimb ischemia.128

Data demonstrating that upregulation of HiF results in 
tumor progression might caution against the long-term 
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use of PHD inhibitors.129 a study, however, has demon-
strated that inhibition of PHD2 prompts endothelial 
cells to readjust their shape and phenotype to restore 
oxygen supply, improves tumor perfusion and oxygena-
tion and inhibits tumor-cell invasion, intravasation  
and metastasis.130

Knockout of the genes encoding either PHD1 or 
PHD3 in mice has no apparent effect on erythropoiesis.96 
Knockout of both genes was however associated with an 
accumulation of HiF-2α in the liver and the development 
of moderate erythrocytosis, due partly to activation of 
the hepatic HiF-2α–erythropoietin pathway. adult mice 
deficient in PHD2 developed severe erythrocytosis by 
activation of the renal HiF-2α–erythropoietin pathway, 
with a dramatic increase in erythropoietin serum levels 
and in erythropoietin renal messenger rna.96

evidence suggests that PHDs, especially PHD1 and 
PHD3, have targets other than the hydroxylation of 
HiF-α. the nuclear factor κB pathway is suppressed 
under normoxic conditions, but activated by hypoxia 
through a modification by PHD1 of iκB kinase-β.131 
PHD1 also interacts with rna polymerase ii, which 

regulates tumor growth.132 PHD3 is involved in the 
apoptosis of neuronal cells after nerve growth factor 
withdrawal, a phenomenon that is not prevented by 
simultaneous activation of HiF-α.133 PHD3 binds to and 
regulates the stability of activating transcription factor 4, 
which is involved in unfolded protein responses under 
er stress.134 of interest, a nonspecific PHD inhibi-
tor, dimethyloxalylglycine, activates antioxidant gene 
expression through the nuclear factor erythroid 2-related 
factor 2 (nrf2) pathway.135 nrf2 induces the expression 
of various antioxidant proteins with critical roles in 
the adaptive responses to oxidative stress (for example, 
heme oxygenase 1 or glutathione peroxidase 2).136 these 
PHD-dependent but HiF-independent pathways might 
offer additional therapeutic targets for protection against 
hypoxic tissue injury.

Dissociation between the benefits of HiF activation and 
the effects on angiogenesis and erythropoiesis has been 
illustrated by aragonés et al.23 the specific disruption of 
PHD1 induces hypoxic tolerance in muscle cells, without 
induction of angiogenesis and erythrocytosis. this unex-
pected effect is caused, at least in part, by the activation of 
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HiF-2α. Basal oxygen metabolism is reprogrammed and 
the generation of oxidative stress is reduced in hypoxic 
mitochondria (Figure 7). inhibition of PHD1 prob-
ably induces various protective mechanisms, including 
increased atP production through an increased rate of 
glycolysis and a restricted entry of glycolytic intermediates 
into the oxidative phosphorylation pathway by the induc-
tion of pyruvate dehydrogenase kinase, which attenuates 
entry of electrons into the electron transport chain. these 
reactions conserve energy, reduce oxidative damage, 
and protect the cell from hypoxic damage. such find-
ings explain in part why hibernating or hypoxia- tolerant  
animals are resistant to ischemic insults.137,138

inhibition of PHD1 also protects cultured rat neuronal 
cells: knockdown of PHD1, but not PHD2 and PHD3, 
prevents neuronal death induced by oxidative stress.139 
specific inhibition of PHD1 may, therefore, mediate 
tissue protection by reducing oxidative stress.

unfortunately, inhibitors specific for a PHD subtype 
have not yet been developed. a specific PHD1 inhibi-
tor may provide a novel therapy without adverse effects 
associated with PHD2 inhibition (for example, poly-
cythemia96,140,141 congestive heart failure,139 and placental 
defects during pregnancy142).

other targets
the PHD–HiF pathway is linked to a variety of bio-
logical reactions. agents interfering with some of these 
processes may be of potential benefit. For example, an 
increase in angiopoietin 1 activity notably inhibits PHD2 

and activates HiF-1α.143 Hypoxia also increases the 
expression of plasminogen activator inhibitor 1144,145 and 
connective tissue growth factor,138 both of which have 
pivotal roles in the development of diabetic nephro pathy. 
inhibitors of these factors (for example, plasminogen 
activator inhibitor 1 inhibitors146,147 or monoclonal anti-
bodies against connective tissue growth factor148) may 
interfere indirectly with the detrimental consequences 
of abnormal oxygen metabolism.

Conclusions
Chronic hypoxia is a key factor in diabetic nephro pathy 
and various other chronic conditions, including a wide 
variety of kidney disorders, ischemic heart disease and 
stroke. advances in the treatment or prevention of dia-
betic nephropathy delineated in the present review may 
thus herald newer concepts in the management of a 
broad spectrum of chronic illnesses.
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